
Dorit[a]
Medical News, Wednesday, 7-Dec-2005
Scientists have devised a strategy to treat tumors by selectively targeting and killing the malignant cells. A new preclinical study, published in the open access journal PLoS Medicine, has applied the approach to combat glioblastoma multiforme (GBM). This is the most aggressive form of brain tumour, growing very quickly before symptoms are experienced and killing most patients within a year of diagnosis.
Working in mice, Alexander Levitzki and colleagues took advantage of previous research that showed how to distinguish between cancerous and healthy cells through the detection of molecules known as epidermal growth factor receptors (EGFR). The glioblastoma cells overexpress EGFR (that is, in comparison with normal brain cells, they have many more of these molecules on their surface). The scientists then selected a type of genetic material (a nucleic acid) associated with viral infections and linked it to a compound that could bind to EGFR. As a result of the defence mechanisms that have evolved to protect mammalian cells from viruses, cells are programmed to die once they take up this particular nucleic acid. The treatment therefore eliminates the tumor cells but avoids damage to the normal brain tissue.
The researchers found that the treatment was effective in mice implanted with human brain tumor cells that overexpressed EGFR. The treatment could eliminate established cancers and there was no evidence of recurrence: the mice remained cancer free for over a year. It is more difficult to cure cancer in humans than cancer in mice, but the results are encouraging. In his Perspective article accompanying the study, Robert Weil of the Brain Tumor Institute at the Cleveland Clinic Foundation suggests that the approach deserves to be "fast-tracked to the clinic" given the lack of effective treatments for GBM. There are few existing options aside from chemotherapy and surgery to remove the tumor, and it is rare that these treatments stop the cancer from recurring. Given the prevalence of EGFR in cells of other cancer types (such as breast cancer and lung cancer), the approach pioneered in this study may be applicable to other forms of cancer as well.
http://dx.doi.org/10.1371/journal.pmed.0030006
------------------------>
EGF Receptor-Targeted Synthetic Double-Stranded RNA Eliminates Glioblastoma, Breast Cancer, and Adenocarcinoma Tumors in Mice
Alexei Shir1, Manfred Ogris2, Ernst Wagner2, Alexander Levitzki1*
1 Department of Biological Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel, 2 Pharmaceutical Biology-Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität, Munich, Germany
ABSTRACT
Background
Glioblastoma multiforme (GBM) is the most lethal form of brain cancer. With the available treatments, survival does not exceed 12-14 mo from the time of diagnosis. We describe a novel strategy to selectively induce the death of glioblastoma cells and other cancer cells that over-express the EGF receptor. Using a non-viral delivery vector that homes to the EGF receptor, we target synthetic anti-proliferative dsRNA (polyinosine-cytosine [poly IC]), a strong activator of apoptosis, selectively to cancer cells.
Methods and Findings
Poly IC was delivered by means of a non-viral vector: 25kDa polyethylenimine-polyethyleneglycol-EGF (PEI25-PEG-EGF). EGFR-targeted poly IC induced rapid apoptosis in the target cells in vitro and in vivo. Expression of several cytokines and "bystander killing" of untransfected tumor cells was detected in vitro and in vivo. Intra-tumoral delivery of the EGFR-targeted poly IC induced the complete regression of pre-established intracranial tumors in nude mice, with no obvious adverse toxic effects on normal brain tissue. A year after treatment completion the treated mice remain cancer-free and healthy. Similarly, non-viral delivery of poly IC completely eliminated pre-established breast cancer and adenocarcinoma xenografts derived from EGFR over-expressing cancer cell lines, suggesting that the strategy is applicable to other EGFR-over-expressing tumors.
Conclusion
The strategy described has yielded an effective treatment of EGFR over-expressing GBM in an animal model. If this strategy is translated successfully to the clinical setting, it may actually offer help to GBM patients. Moreover the elimination of two additional EGFR over-expressing cancers in vivo suggests that in principle this strategy can be applied to treat other tumors that over-express EGFR.